#!/usr/bin/env python # -*- coding: utf8 -*- # :Id: $Id: latex2mathml.py 7218 2011-11-08 17:42:40Z milde $ # :Copyright: © 2010 Günter Milde. # Based on rst2mathml.py from the latex_math sandbox project # © 2005 Jens Jørgen Mortensen # :License: Released under the terms of the `2-Clause BSD license`_, in short: # # Copying and distribution of this file, with or without modification, # are permitted in any medium without royalty provided the copyright # notice and this notice are preserved. # This file is offered as-is, without any warranty. # # .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause """Convert LaTex math code into presentational MathML""" # Based on the `latex_math` sandbox project by Jens Jørgen Mortensen import docutils.math.tex2unichar as tex2unichar # TeX spacing combining over = {'acute': u'\u00B4', # u'\u0301', 'bar': u'\u00AF', # u'\u0304', 'breve': u'\u02D8', # u'\u0306', 'check': u'\u02C7', # u'\u030C', 'dot': u'\u02D9', # u'\u0307', 'ddot': u'\u00A8', # u'\u0308', 'dddot': u'\u20DB', 'grave': u'`', # u'\u0300', 'hat': u'^', # u'\u0302', 'mathring': u'\u02DA', # u'\u030A', 'overleftrightarrow': u'\u20e1', # 'overline': # u'\u0305', 'tilde': u'\u02DC', # u'\u0303', 'vec': u'\u20D7'} Greek = { # Capital Greek letters: (upright in TeX style) 'Phi':u'\u03a6', 'Xi':u'\u039e', 'Sigma':u'\u03a3', 'Psi':u'\u03a8', 'Delta':u'\u0394', 'Theta':u'\u0398', 'Upsilon':u'\u03d2', 'Pi':u'\u03a0', 'Omega':u'\u03a9', 'Gamma':u'\u0393', 'Lambda':u'\u039b'} letters = tex2unichar.mathalpha special = tex2unichar.mathbin # Binary symbols special.update(tex2unichar.mathrel) # Relation symbols, arrow symbols special.update(tex2unichar.mathord) # Miscellaneous symbols special.update(tex2unichar.mathop) # Variable-sized symbols special.update(tex2unichar.mathopen) # Braces special.update(tex2unichar.mathclose) # Braces special.update(tex2unichar.mathfence) sumintprod = ''.join([special[symbol] for symbol in ['sum', 'int', 'oint', 'prod']]) functions = ['arccos', 'arcsin', 'arctan', 'arg', 'cos', 'cosh', 'cot', 'coth', 'csc', 'deg', 'det', 'dim', 'exp', 'gcd', 'hom', 'inf', 'ker', 'lg', 'lim', 'liminf', 'limsup', 'ln', 'log', 'max', 'min', 'Pr', 'sec', 'sin', 'sinh', 'sup', 'tan', 'tanh', 'injlim', 'varinjlim', 'varlimsup', 'projlim', 'varliminf', 'varprojlim'] mathbb = { 'A': u'\U0001D538', 'B': u'\U0001D539', 'C': u'\u2102', 'D': u'\U0001D53B', 'E': u'\U0001D53C', 'F': u'\U0001D53D', 'G': u'\U0001D53E', 'H': u'\u210D', 'I': u'\U0001D540', 'J': u'\U0001D541', 'K': u'\U0001D542', 'L': u'\U0001D543', 'M': u'\U0001D544', 'N': u'\u2115', 'O': u'\U0001D546', 'P': u'\u2119', 'Q': u'\u211A', 'R': u'\u211D', 'S': u'\U0001D54A', 'T': u'\U0001D54B', 'U': u'\U0001D54C', 'V': u'\U0001D54D', 'W': u'\U0001D54E', 'X': u'\U0001D54F', 'Y': u'\U0001D550', 'Z': u'\u2124', } mathscr = { 'A': u'\U0001D49C', 'B': u'\u212C', # bernoulli function 'C': u'\U0001D49E', 'D': u'\U0001D49F', 'E': u'\u2130', 'F': u'\u2131', 'G': u'\U0001D4A2', 'H': u'\u210B', # hamiltonian 'I': u'\u2110', 'J': u'\U0001D4A5', 'K': u'\U0001D4A6', 'L': u'\u2112', # lagrangian 'M': u'\u2133', # physics m-matrix 'N': u'\U0001D4A9', 'O': u'\U0001D4AA', 'P': u'\U0001D4AB', 'Q': u'\U0001D4AC', 'R': u'\u211B', 'S': u'\U0001D4AE', 'T': u'\U0001D4AF', 'U': u'\U0001D4B0', 'V': u'\U0001D4B1', 'W': u'\U0001D4B2', 'X': u'\U0001D4B3', 'Y': u'\U0001D4B4', 'Z': u'\U0001D4B5', 'a': u'\U0001D4B6', 'b': u'\U0001D4B7', 'c': u'\U0001D4B8', 'd': u'\U0001D4B9', 'e': u'\u212F', 'f': u'\U0001D4BB', 'g': u'\u210A', 'h': u'\U0001D4BD', 'i': u'\U0001D4BE', 'j': u'\U0001D4BF', 'k': u'\U0001D4C0', 'l': u'\U0001D4C1', 'm': u'\U0001D4C2', 'n': u'\U0001D4C3', 'o': u'\u2134', # order of 'p': u'\U0001D4C5', 'q': u'\U0001D4C6', 'r': u'\U0001D4C7', 's': u'\U0001D4C8', 't': u'\U0001D4C9', 'u': u'\U0001D4CA', 'v': u'\U0001D4CB', 'w': u'\U0001D4CC', 'x': u'\U0001D4CD', 'y': u'\U0001D4CE', 'z': u'\U0001D4CF', } negatables = {'=': u'\u2260', '\in': u'\u2209', '\equiv': u'\u2262'} # LaTeX to MathML translation stuff: class math: """Base class for MathML elements.""" nchildren = 1000000 """Required number of children""" def __init__(self, children=None, inline=None): """math([children]) -> MathML element children can be one child or a list of children.""" self.children = [] if children is not None: if type(children) is list: for child in children: self.append(child) else: # Only one child: self.append(children) if inline is not None: self.inline = inline def __repr__(self): if hasattr(self, 'children'): return self.__class__.__name__ + '(%s)' % \ ','.join([repr(child) for child in self.children]) else: return self.__class__.__name__ def full(self): """Room for more children?""" return len(self.children) >= self.nchildren def append(self, child): """append(child) -> element Appends child and returns self if self is not full or first non-full parent.""" assert not self.full() self.children.append(child) child.parent = self node = self while node.full(): node = node.parent return node def delete_child(self): """delete_child() -> child Delete last child and return it.""" child = self.children[-1] del self.children[-1] return child def close(self): """close() -> parent Close element and return first non-full element.""" parent = self.parent while parent.full(): parent = parent.parent return parent def xml(self): """xml() -> xml-string""" return self.xml_start() + self.xml_body() + self.xml_end() def xml_start(self): if not hasattr(self, 'inline'): return ['<%s>' % self.__class__.__name__] xmlns = 'http://www.w3.org/1998/Math/MathML' if self.inline: return ['' % xmlns] else: return ['' % xmlns] def xml_end(self): return ['' % self.__class__.__name__] def xml_body(self): xml = [] for child in self.children: xml.extend(child.xml()) return xml class mrow(math): def xml_start(self): return ['\n<%s>' % self.__class__.__name__] class mtable(math): def xml_start(self): return ['\n<%s>' % self.__class__.__name__] class mtr(mrow): pass class mtd(mrow): pass class mx(math): """Base class for mo, mi, and mn""" nchildren = 0 def __init__(self, data): self.data = data def xml_body(self): return [self.data] class mo(mx): translation = {'<': '<', '>': '>'} def xml_body(self): return [self.translation.get(self.data, self.data)] class mi(mx): pass class mn(mx): pass class msub(math): nchildren = 2 class msup(math): nchildren = 2 class msqrt(math): nchildren = 1 class mroot(math): nchildren = 2 class mfrac(math): nchildren = 2 class msubsup(math): nchildren = 3 def __init__(self, children=None, reversed=False): self.reversed = reversed math.__init__(self, children) def xml(self): if self.reversed: ## self.children[1:3] = self.children[2:0:-1] self.children[1:3] = [self.children[2], self.children[1]] self.reversed = False return math.xml(self) class mfenced(math): translation = {'\\{': '{', '\\langle': u'\u2329', '\\}': '}', '\\rangle': u'\u232A', '.': ''} def __init__(self, par): self.openpar = par math.__init__(self) def xml_start(self): open = self.translation.get(self.openpar, self.openpar) close = self.translation.get(self.closepar, self.closepar) return ['' % (open, close)] class mspace(math): nchildren = 0 class mstyle(math): def __init__(self, children=None, nchildren=None, **kwargs): if nchildren is not None: self.nchildren = nchildren math.__init__(self, children) self.attrs = kwargs def xml_start(self): return [''] class mover(math): nchildren = 2 def __init__(self, children=None, reversed=False): self.reversed = reversed math.__init__(self, children) def xml(self): if self.reversed: self.children.reverse() self.reversed = False return math.xml(self) class munder(math): nchildren = 2 class munderover(math): nchildren = 3 def __init__(self, children=None): math.__init__(self, children) class mtext(math): nchildren = 0 def __init__(self, text): self.text = text def xml_body(self): return [self.text] def parse_latex_math(string, inline=True): """parse_latex_math(string [,inline]) -> MathML-tree Returns a MathML-tree parsed from string. inline=True is for inline math and inline=False is for displayed math. tree is the whole tree and node is the current element.""" # Normalize white-space: string = ' '.join(string.split()) if inline: node = mrow() tree = math(node, inline=True) else: node = mtd() tree = math(mtable(mtr(node)), inline=False) while len(string) > 0: n = len(string) c = string[0] skip = 1 # number of characters consumed if n > 1: c2 = string[1] else: c2 = '' ## print n, string, c, c2, node.__class__.__name__ if c == ' ': pass elif c == '\\': if c2 in '{}': node = node.append(mo(c2)) skip = 2 elif c2 == ' ': node = node.append(mspace()) skip = 2 elif c2 == ',': # TODO: small space node = node.append(mspace()) skip = 2 elif c2.isalpha(): # We have a LaTeX-name: i = 2 while i < n and string[i].isalpha(): i += 1 name = string[1:i] node, skip = handle_keyword(name, node, string[i:]) skip += i elif c2 == '\\': # End of a row: entry = mtd() row = mtr(entry) node.close().close().append(row) node = entry skip = 2 else: raise SyntaxError(ur'Syntax error: "%s%s"' % (c, c2)) elif c.isalpha(): node = node.append(mi(c)) elif c.isdigit(): node = node.append(mn(c)) elif c in "+-*/=()[]|<>,.!?':;@": node = node.append(mo(c)) elif c == '_': child = node.delete_child() if isinstance(child, msup): sub = msubsup(child.children, reversed=True) elif isinstance(child, mo) and child.data in sumintprod: sub = munder(child) else: sub = msub(child) node.append(sub) node = sub elif c == '^': child = node.delete_child() if isinstance(child, msub): sup = msubsup(child.children) elif isinstance(child, mo) and child.data in sumintprod: sup = mover(child) elif (isinstance(child, munder) and child.children[0].data in sumintprod): sup = munderover(child.children) else: sup = msup(child) node.append(sup) node = sup elif c == '{': row = mrow() node.append(row) node = row elif c == '}': node = node.close() elif c == '&': entry = mtd() node.close().append(entry) node = entry else: raise SyntaxError(ur'Illegal character: "%s"' % c) string = string[skip:] return tree def handle_keyword(name, node, string): skip = 0 if len(string) > 0 and string[0] == ' ': string = string[1:] skip = 1 if name == 'begin': if not string.startswith('{matrix}'): raise SyntaxError(u'Environment not supported! ' u'Supported environment: "matrix".') skip += 8 entry = mtd() table = mtable(mtr(entry)) node.append(table) node = entry elif name == 'end': if not string.startswith('{matrix}'): raise SyntaxError(ur'Expected "\end{matrix}"!') skip += 8 node = node.close().close().close() elif name in ('text', 'mathrm'): if string[0] != '{': raise SyntaxError(ur'Expected "\text{...}"!') i = string.find('}') if i == -1: raise SyntaxError(ur'Expected "\text{...}"!') node = node.append(mtext(string[1:i])) skip += i + 1 elif name == 'sqrt': sqrt = msqrt() node.append(sqrt) node = sqrt elif name == 'frac': frac = mfrac() node.append(frac) node = frac elif name == 'left': for par in ['(', '[', '|', '\\{', '\\langle', '.']: if string.startswith(par): break else: raise SyntaxError(u'Missing left-brace!') fenced = mfenced(par) node.append(fenced) row = mrow() fenced.append(row) node = row skip += len(par) elif name == 'right': for par in [')', ']', '|', '\\}', '\\rangle', '.']: if string.startswith(par): break else: raise SyntaxError(u'Missing right-brace!') node = node.close() node.closepar = par node = node.close() skip += len(par) elif name == 'not': for operator in negatables: if string.startswith(operator): break else: raise SyntaxError(ur'Expected something to negate: "\not ..."!') node = node.append(mo(negatables[operator])) skip += len(operator) elif name == 'mathbf': style = mstyle(nchildren=1, fontweight='bold') node.append(style) node = style elif name == 'mathbb': if string[0] != '{' or not string[1].isupper() or string[2] != '}': raise SyntaxError(ur'Expected something like "\mathbb{A}"!') node = node.append(mi(mathbb[string[1]])) skip += 3 elif name in ('mathscr', 'mathcal'): if string[0] != '{' or string[2] != '}': raise SyntaxError(ur'Expected something like "\mathscr{A}"!') node = node.append(mi(mathscr[string[1]])) skip += 3 elif name == 'colon': # "normal" colon, not binary operator node = node.append(mo(':')) # TODO: add ``lspace="0pt"`` elif name in Greek: # Greek capitals (upright in "TeX style") node = node.append(mo(Greek[name])) # TODO: "ISO style" sets them italic. Could we use a class argument # to enable styling via CSS? elif name in letters: node = node.append(mi(letters[name])) elif name in special: node = node.append(mo(special[name])) elif name in functions: node = node.append(mo(name)) elif name in over: ovr = mover(mo(over[name]), reversed=True) node.append(ovr) node = ovr else: raise SyntaxError(u'Unknown LaTeX command: ' + name) return node, skip